Instrukcja komunikacji ze sterownikiem SP-41P przez RS485 w protokole Modbus RTU.

<u>1. Podłączenie elektryczne</u>

Na rysunku 1 przedstawiono schemat podłączenia sterownika SP-41P. Do zacisków 15 (A+), 14 (B-) podłączyć odpowiednie linie magistrali RS485.

Stosować połączenie w w topologii magistrali. Na rysunku 2 przedstawiono topologię magistrali.

Rysunek 2: Topologia magistrali.

Zalecane jest stosowanie przewodów ekranowanych. W przypadku użycia przewodu typu skrętka wykorzystać jedną skręconą parę przewodów. Jeśli w jednej sieci połączone jest kilka urządzeń należy na początku i końcu magistrali zastosować rezystory terminujące 120 Ω . Sterownik SP-41P nie posiada wbudowanego rezystora terminującego, w razie potrzeby należy podłączyć go do zacisków 15 i 14 równolegle z przewodami magistrali.

Rysunek: 1 Schemat podłączenia sterownika SP-41P.

2. Ustawienia parametrów komunikacji

W tabeli 1 przedstawiono parametry komunikacji RS485. Pogrubione zostały wartości fabryczne. Ustawienia parametrów komunikacji takie jak adres, prędkość transmisji i parzystość można zmienić w menu sterownika.

Parametry komunikacji RS485				
Protokół	Modbus RTU			
Tryb pracy	Slave			
Ustawienia portu				
Zakres adresów	1 — 99, (70)			
Prędkość	4800, 9600 , 19200, 38400, 57600,			
Bity danych	8			
Bity stopu	1			
Parzystość	Brak, Odd, Even			
Obsługa funkcji	Read input registers 4			
	Read holding registers 3			
Max. częstotliwość	10 Hz			

a) Wejście do ustawień sterownika:,

- 1. Aby wejść do ustawień, sterownik musi być w trybie wyświetlania stanu pomp.
- 2. Nacisnąć krótko przycisk "SET", sterownik wyświetli symbol "P.0".
- 3. Za pomocą przycisków "∨" lub "∧" można zmieniać parametry.
- 4. Naciskając krótko przycisk "SET" można wejść w zmianę wartości parametru.
- 5. Przytrzymanie przycisku "SET" ok. 1,5 sekundy spowoduje powrót do ekranu głównego.

Tabela 1: Parametry komunikacji RS485.

b) Zmiana parametrów komunikacji:

- 1. W ustawieniach wybrać pozycję **U.dod.** i nacisnąć przycisk "SET". Wyświetlacz pokaże ustawienia napis "**r.485**"
- 2. Nacisnąć ponownie przycisk "SET" wyświetli się migający napis "**Id.XX**" przedstawiający adres sterownika w sieci RS485.
- 3. Za pomocą przycisków "V" lub "A" ustawić adres sterownika w sieci RS485.
- 4. Nacisnąć przycisk "SET", wyświetli się migająca wartość prędkości transmisji wyrażona w kBd, przykładowo "9.6" oznacza 9600 bodów.
- 5. Za pomocą przycisków "∨" lub "∧" ustawić prędkość transmisji.
- 6. Nacisnąć przycisk "SET" wyświetli się migający napis przedstawiający ustawioną parzystość. Napis "nonE" brak parzystości, "odd" parzystość odd, "EvEn" parzystość even.
- 7. Nacisnąć przycisk "SET", .sterownik zresetuje się i zacznie pracować z nowymi parametrami transmisji.

3. Zmienne tylko do odczytu

W tabeli 2 przedstawiono listę zmiennych tylko do odczytu za pomocą funkcji 4 protokołu Modbus RTU (read input registers).

Adres	Opis	Funkcja	Wartość
1	Praca automatyczna P1	4	0 - 1
2	Praca automatyczna P2	4	0 – 1
3	Potwierdzenie pracy P1	4	0 – 1
4	Potwierdzenie pracy P2	4	0 – 1
5	Poziom S1	4	0 – 1
6	Poziom S2	4	0 – 1
7	Poziom S3	4	0 – 1
8	Poziom S4	4	0 – 1
9	U1 sygnał(0-10 V	4	0-1200
10	Prąd P1	4	0-zakres przekładnika
11	U2 sygnał(0-10 V)	4	0-1200
12	Prąd P2	4	0-zakres przekładnika
13	Stan pompy P1	4	0-wyłączona, 1- praca, 2- awaria. 3- odstawiona
14	Stan pompy P2	4	0-wyłączona, 1- praca, 2- awaria, 3- odstawiona
15	Stan wyjścia alarmowego	4	0 – 1
16	Czas pracy P1_godz	4	0-9999
17	Czas pracy P1_min	4	0-59
18	Czas pracy P2_godz	4	0-9999
19	Czas pracy P2_min	4	0-59
20	llość załączeń P1	4	0-9999
21	llość załączeń P2	4	0-9999
22	Rezerwa	4	

Tabela 2 Wykaz zmiennych tylko do odczytu.

Sygnały analogowe zapisane są w formacie XX.xx, oznacza to, że wartość aktualnego napięcia wynosząca 500 w rzeczywistości wynosi 5,00 V.

Prądy pomp zapisane są w formacie XX.x, oznacza to, że wartość aktualnego prądu wynosząca 100 w rzeczywistości wynosi 10,0 A.

Do przeprowadzenia testów komunikacji komputera ze sterownikiem można wykorzystać darmowy program ModbusMAT lub Mbpoll w wersji trial.