Instrukcja komunikacji ze sterownikiem SP-41C przez RS485 w protokole Modbus RTU.

<u>1. Podłączenie elektryczne</u>

Na rysunku 1 przedstawiono schemat podłączenia sterownika SP-41C. Do zacisków 13 (A+), 14 (B-) podłączyć odpowiednie linie magistrali RS485.

Stosować połączenie w w topologii magistrali. Na rysunku 2 przedstawiono topologię magistrali.

Rysunek 2: Topologia magistrali.

Zalecane jest stosowanie przewodów ekranowanych. W przypadku użycia przewodu typu skrętka wykorzystać jedną skręconą parę przewodów. Jeśli w jednej sieci połączone jest kilka urządzeń należy na początku i końcu magistrali zastosować rezystory terminujące 120 Ω . Sterownik SP-41C nie posiada wbudowanego rezystora terminującego, w razie potrzeby należy podłączyć go do zacisków 13 i 14 równolegle z przewodami magistrali.

Rysunek: 1 Schemat podłączenia sterownika SP-41C.

2. Ustawienia parametrów komunikacji

W tabeli 1 przedstawiono parametry komunikacji RS485. Pogrubione zostały wartości fabryczne. Ustawienia parametrów komunikacji takie jak adres, prędkość transmisji i parzystość można zmienić w menu sterownika.

Parametry komunikacji RS485				
Protokół	Modbus RTU			
Tryb pracy	Slave			
Ustawienia portu				
Zakres adresów	1 – 99, (70)			
Prędkość	4800, 9600 , 19200, 38400, 57600,			
Bity danych	8			
Bity stopu	1			
Parzystość	Brak, Odd, Even			
Oholuga fuskaii	Read input registers 4			
Obaluga funkaji	Redu input registers 4			
Obsługa funkcji	Read holding registers 3			

a) Wejście do ustawień sterownika:

- 1. Aby wejść do ustawień, sterownik musi być w trybie wyświetlania aktualnego poziomu/ciśnienia.
- 2. Nacisnąć przycisk "SET", wyświetlacz pokaże **P.0**.
- 3. Za pomocą przycisków "∨" lub "∧" można zmieniać parametry.
- 4. Za pomocą przycisku "SET" można wejść w zmianę wartości parametru.
- 5. Za pomocą przycisku "P" można wrócić do ekranu głównego.

Tabela 1: Parametry komunikacji RS485.

b) Zmiana parametrów komunikacji:

- 1. W ustawieniach wybrać pozycję **U.dod.** i nacisnąć przycisk . Wyświetlacz pokaże ustawienia napis "**r.485**"
- 2. Nacisnąć ponownie przycisk "SET" wyświetli się migający napis "**Id.XX**" przedstawiający adres sterownika w sieci RS485.
- 3. Za pomocą przycisków "V" lub "^" ustawić adres sterownika w sieci RS485.
- 4. Nacisnąć przycisk "SET", wyświetli się migająca wartość prędkości transmisji wyrażona w kBd, przykładowo "9.6" oznacza 9600 bodów.
- 5. Za pomocą przycisków "V" lub "^" ustawić prędkość transmisji.
- 6. Nacisnąć przycisk "SET" wyświetli się migający napis przedstawiający ustawioną parzystość. Napis "nonE" brak parzystości, "odd" parzystość odd, "EvEn" parzystość even.
- 7. Nacisnąć przycisk "SET", .sterownik zresetuje się i zacznie pracować z nowymi parametrami transmisji.

3. Zmienne tylko do odczytu

W tabeli 2 przedstawiono listę zmiennych tylko do odczytu za pomocą funkcji 4 protokołu Modbus RTU (read input registers).

Adres	Opis	Funkcja	Wartość
1	Praca automatyczna P1	4	0 - 1
2	Praca automatyczna P2	4	0 – 1
3	Potwierdzenie pracy P1	4	0 – 1
4	Potwierdzenie pracy P2	4	0 – 1
5	Poziom awaryjny	4	0 – 1
6	Stan pompy P1	4	0-wyłączona, 1- praca, 2- awaria, 3- odstawiona
7	Stan pompy P2	4	0-wyłączona, 1- praca, 2- awaria, 3- odstawiona
8	Stan alarmu	4	0-1
9	I1 sygnał(4-20 mA)	4	0-2100
10	Aktualny poziom/ciśnienie	4	0-zakres sondy/przetwornika
11	U1 sygnał(0-10 V	4	0-1200
12	Prąd P1	4	0-zakres przekładnika
13	U2 sygnał(0-10 V)	4	0-1200
14	Prąd P2	4	0-zakres przekładnika
15	Czas pracy P1_godz	4	0-9999
16	Czas pracy P1_min	4	0-59
17	Czas pracy P2_godz	4	0-9999
18	Czas pracy P2_min	4	0-59
19	llość załączeń P1	4	0-9999
20	llość załączeń P2	4	0-9999
21	Rezerwa	4	
22	Rezerwa	4	

Tabela 2 Wykaz zmiennych tylko do odczytu.

Aktualny poziom/ciśnienie, sygnały analogowe oraz prądy pomp zapisane są w formacie XX.xx, oznacza to, że wartość aktualnego poziomu wynosząca 500 w rzeczywistości wynosi 5 m.

4. Zmienne do odczytu/zapisu

W tabeli 3 przedstawiono listę zmiennych do odczytu/zapisu za pomocą funkcji 3 protokołu Modbus RTU (read/write holding registers).

Adres	Opis	Funkcja	Wartość
1	Jednostka	3	0-metry, 1-bary
2	Zakres sondy/przetwornika	3	0-1500
3	Tryb pracy	3	0-opróżnianie, 1- napełnianie
4	Poziom S1	3	0 – zakres sondy/przetwornika -2
5	Poziom S2	3	0 – zakres sondy/przetwornika -1
6	Poziom S3	3	0 – zakres sondy/przetwornika
7	Czas przełączania pomp	3	0-90
8	Przekładnik pompy P1	3	0 – 100
9	Przekładnik pompy P2	3	0 – 100
10	Zerowanie czasu pracy pomp	3	0 – 1
11	Zerowanie załączeń pomp	3	0 – 1
12	Rezerwa	3	

Aby wyzerować czas pracy lub liczbę załączeń należy pod odpowiedni adres wpisać wartość "1".

Do przeprowadzenia testów komunikacji komputera ze sterownikiem można wykorzystać darmowy program ModbusMAT, lub Mbpoll w wersji trial.

Producent i dystrybutor :Przedsiębiorstwo Produkcyjno-Usługowe "E L E K T R O N"ul. Dolina Zielona 46 a65-154 Zielona Góraelektron@zgora.com.plTel/Fax : 68/ 326-78-10www.elektron.zgora.com.pl